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1 Proof of Exhaustive Enumeration of Sub-
division Stencils

We use notation introduced in the Appendix of the paper. To com-
pute the value of P 1

j we need to define a stencil of control points
P 0
i that influence its value. We exhaustively enumerate the 1-ring

neighborhood configurations (with a suitable extension at T-vertices
and T-edges) of a vertex in all possible T-mesh configurations.
Here we show that such a configurationN in fact covers the stencil,
i.e. no P 0

i outsideN can influence P 1
j .

We split the parametric plane outside N into two parts: (1) half-
slabs Hk in which a basis function B0

i cannot affect P 1
j since its

cross would have to intersect two edges inN before S0
i would cover

S1
j , and (2) the remaining regions (corner zones) Ck for which we

use a Lemma from [da Veiga et al. 2012].
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Figure 1: Half-slab Hk (light green) and corner zones Ck (light
red), corner points ck (red), basis support S1

j of vertex vj (blue).
Right: minimal rectangle R that a quadrant of vi’s basis function
needs to contain.

Let
S1
j = [s0 . . . s1]× [t0 . . . t1].

Half-slabs Hk are constructed for each of the four directions t,−t,
s and −s. Consider a line `s in one of these directions (e.g., hor-
izontal direction −s) that intersects the stencil candidate N . Each
such line is intersected by at least two edges of the stencil (this can
be verified for each stencil candidate directly). Consider the set of
points on `s separated from the right boundary of S1

j by two stencil
edge intersections with `s. These points cannot be control points
in the stencil. The union of such points for all lines `s form the
half-slab H1.
For every N there are four corner points where two Hk intersect.
They bound one of the open regions Ck which we will call corner
zone. Since the entire plane is covered by these regions:

R2 = N ∪
t⋃

k=1

Hk ∪ Ck,
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all that is left to do is to prove that any B0
i centered in any corner

zone Ck can not contain S1
j . To show this, we use Lemma 4.2 from

[da Veiga et al. 2012]. The vertex vi is called an active T-mesh
node if it is sufficiently far away from any boundary where there
are enough knots to define its basis function. TF(vi) is the tiled
floor of vi, i.e. the support of B0

i excluding the 5x5 grid of knot
lines.
Lemma 1 LetM be an AS T-mesh and vi an active T-mesh node.
Then TF(vi) does not contain any T-mesh node.
As a consequence of this Lemma, in the case of dyadic T-meshes,
all T-mesh vertices vi in a quadrant Q of a basis function B0

i , have
to be a subset of one of two possible configurations (see Figure 2).

Figure 2: Possible quadrants for DAS T-spline basis functions, vis-
ible part of basis cross marked blue

This can be seen as follows: There can be no vertices or crossing
edges on the basis cross other than the two that define the basis
cross (otherwise the basis cross would be shorter), so the densest
regular grid we can define on Q has 3 × 3 knots. W.l.o.g., let us
assume there are only vertical T-edges in this grid. It contains at
least one T-joint with a horizontal stem – otherwise the support of
the basis function B0

i would be smaller. Wherever the T-joint is lo-
cated, its face and edge extension together span the entire s-span of
Q, making it impossible to add a vertical T-joint anywhere without
violating the analysis-suitable rule that no horizontal and vertical
T-joint extensions intersect.
So in one quadrant, analysis-suitable T-meshes can only have ei-
ther horizontal or vertical T-joints, but not both. Since we are only
considering dyadic T-meshes, there can be at most one T-joint per
edge. Hence the densest Q given a fixed basis cross is defined by
the cascaded T-joint pattern shown in Figure 2. It is clear that the
s and t knots of any other refinement are contained in the knots of
this Q.
We can hence conclude that there is one dimension along which
there can be no more than 3 knots in Q.
To prove that no vi ∈ Ck exists such that S0

i ⊇ S1
j , we show that

the relevant quadrant Q of a basis function B0
i associated with such

a vi requires at least 4 knots along both dimensions.

A necessary condition for S0
i ⊇ S1

j is that Q contains the rectangle
R spanned by vi and the corner of S1

j diagonally opposite to vi
(Figure 1 right).
We then collect the knots of all vertices in R, and include the s- and
t-extents of R to ensure that Q indeed contains R. Recall that the
total knot count cannot exceed three in both dimensions simultane-
ously.
For each previously listed stencil, however, we verified by this sim-
ple counting scheme that for each stencil Ck, the number of knots
in R is always≥ 4 in each dimension. Hence, there are no vi ∈ Ck

such that their support contains S1
j , and there are no outside control

points P 0
i that affect P 1

j .
To verify our factorization reduces to analysis-suitable T-Splines,
now all we have to do is to verify that it yields the same results we
obtain with the refinement formulas in the paper for every vertex of
every stencil connectivity enumerated above.



Explicit Enumeration of Dyadic T-mesh Subdivision Stencils

Figure 3: DAS T-mesh face stencils.

Figure 4: DAS T-mesh edge stencils.

Figure 5: DAS T-mesh T-edge stencils.

Figure 6: DAS T-mesh vertex stencils.



Figure 7: DAS T-mesh T-vertex stencils.



1.1 Characteristic Maps and Tangent Plane Analysis
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Figure 8: Left: limit topology around an extraordinary vertex.
Right: ring of Bezier patches extracted from limit stencil

A complete analysis of tangent plane continuity at extraordinary
vertices is relatively complex, due to the large number of configu-
rations that need to be considered. However, with one additional
assumption, a finite enumeration for moderate vertex valences is
possible.

Recall that for a mesh a number of knot values can be chosen in-
dependently, with the rest determined by compatibility conditions.
Specifically, if we assume that all independent knot intervals are set
to 1, then a finite (although very large) enumeration of cases of self-
reproducing connectivities near extraordinary vertex is possible.

To determine the limit behavior at an extraordinary vertex, we can
assume that enough subdivision steps have occured that the topol-
ogy around the vertex is self-similar, i.e. the control mesh of the set
of patches around the extraordinary vertex is the same at all subdi-
vision levels. To characterize these topologies, we define a spoke to
be the edge of the unsubdivided mesh (and all T-joints are regular)
incident at the extraordinary vertex of interest. Then self-similar
configurations are characterized by the following conditions:

• there is a single extraordinary vertex in the control mesh, and
it is not a T-joint;

• knot intervals on spokes are equal;

• there are only T-joints along spokes. A row of faces along a
spoke either all have T-joints on the spoke or none of them do.

These conditions allows us to characterize a configuration by a
small number of parameters (Fig. 8): 1) the valence, 2) the knot
interval of the form 1/2i for each spoke (all other knot intervals are
determined by compatibility constraints, and the intervals on adja-
cent spokes cannot differ by more than a factor of two) 3) whether
there are T-joints on a spoke and to which side their stem is point-
ing.

The two-ring control mesh for the central ring of patches is obtained
by taking the vertices of the union of quads forming 2× 2 grids in
each of k sectors for a vertex of valence k. We note that scaling all
knots by the same amount does not change local surface behavior,

so one of the knot intervals in the self-similar control mesh can be
always chosen to be 1, and the rest set with respect to it.
We enumerate possible configurations by going over all combina-
tions of parameter values and checking the analysis-suitable condi-
tions. Of course the number of configurations grows exponentially,
so the method is practical only for sufficiently low valences (up to
n = 9).
We use the standard approach to verifying C1 continuity for spline-
based schemes [Reif 1995; Peters and Reif 1998].
First, we construct the subdivision matrix mapping the control
points of the two-ring to the points of the two-ring on the next
refinement level, and compute its subdominant eigenvalues and
eigenvectors x`, ` = 1, 2 with components x`

i . The two-
dimensional control mesh with control points (x1

i , x
2
i ) define the

control mesh for the characteristic map from the plane to the plane.
Nonvanishing Jacobians and bijectivity of the characteristic map
are sufficient for C1-continuity. The characteristic map is also self-
similar (i.e., its values on a nested sequence of ring domains are
obtained by scaling), so it is sufficient to examine it on a single
ring domain. The ring domain is obtained as a set of patches form-
ing outer rings after two subdivision steps (Fig. 8). As there are
no extraordinary vertices in the control meshes of these patches, all
subdivision rules affecting the limit surface on these patches are just
analysis-suitable T-spline rules, and patches are polynomial.
For each patch, nonegativity of the Jacobian can be verified explic-
itly, by computing the Jacobian as a polynomial and converting it
to the Bezier form. Positivity of Bezier coefficients of the Jaco-
bian is sufficient. Finally, global bijectivity can be inferred from
local bijectivity by simple winding number tests as shown in [Zorin
2000].



Control Meshes of Characteristic Maps for Dyadic T-meshes

Figure 9: DAS T-mesh valence 3 characteristic map.

Figure 10: DAS T-mesh valence 5 characteristic maps.

Figure 11: DAS T-mesh valence 6 characteristic maps.

Figure 12: DAS T-mesh valence 7 characteristic maps.
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