
Anisotropic Quadrangulation

Denis Kovacsa, Ashish Mylesa, Denis Zorina

aNew York University

Abstract

Quadrangulation methods aim to approximate surfaces by semi-regular meshes with
as few extraordinary vertices as possible. A number of techniques use the harmonic
parameterization to keep quads close to squares, or fit parametrization gradients to
align quads to features. Both types of techniques create near-isotropic quads; feature-
aligned quadrangulation algorithms reduce the remeshing error by aligning isotropic
quads with principal curvature directions. A complementary approach is to allow for
anisotropic elements, which are well-known to have significantly better approximation
quality.

In this work we present a simple and efficient technique to add curvature-dependent
anisotropy to harmonic and feature-aligned parameterization and improve the approxi-
mation error of the quadrangulations. We use a metric derived from the shape operator
which results in a more uniform error distribution, decreasing the error near features.

Keywords: parameterization, quadrangulation, remeshing, conformal
parameterization

1. Introduction

Most common techniques for generating meshes from range scans and volumetric data
produce irregular meshes with complex connectivity. A surface can be stored in a
much more compact form, simplifying and speeding up rendering and processing if it
is converted to a predominantly regular mesh, with only a small number of irregular
vertices and faces. It is desirable to minimize the number of vertices in the semiregular
mesh, while keeping it close to the original mesh.

Recent quadrangulation algorithms use a global parameterization of a mesh; the new
mesh is obtained using a regular sampling pattern in the plane. Quite often, the para-
meterization is optimized to be as isometric possible. However, isometric parameteri-
zations may be far from optimal for surface remeshing, if the goal is to obtain a surface
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as close as possible to the original for a given number of faces. For example, a cylinder
can be mapped isometrically to the plane, resulting in a uniform sampling pattern on
the surface. It can, however, also be meshed with single long quads stretched along the
axial direction, with the same approximation error. We call quadrangulations that adapt
the quad aspect ratio to the surface shape anisotropic. We present a simple and robust
method for computing anisotropic quadrangulations with quad aspect ratios adapted to
local curvature, obtaining a good surface approximation with fewer quads.

Our method utilizes a curvature-based surface metric and computes the parameteriza-
tion using this metric, rather than the Euclidean metric. Our approach is compatible
with most parameterization methods that only rely on intrinsic quantities and vector
fields on the surface.

Defining a metric for meshes is conceptually simple: we assign a new length to each
edge. However, each edge length has to satisfy local triangle inequality constraints.
It is a surprisingly difficult task to ensure that no inequality is violated, and while
it may still be possible to compute a parameterization, the results may not have the
desired anisotropic behavior (Section 5). We solve this problem using the idea of a
high-dimensional embedding [20, 4]: the Euclidean metric in the higher-dimensional
space defines the new edge lengths for the mesh. The embedded vertex coordinates
consist of the original positional and normal coordinates, making the new edge length
computation straightforward.

original anisotropicisotropic

Figure 1: Quadrangulations of a lion head model. Left: the original model; middle: isotropic feature-aligned
quadrangulation (25% reduced) right: anisotropic feature-aligned quadrangulation
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2. Related work

The literature on parameterization, remeshing and quadrangulation is vast; [20], [4]
and [9] are the most closely related to our work. Our key observation is that the high-
dimensional embedding proposed in [4] to obtain anisotropic quadrangulations with
the quad aspect ratio determined by the ratio of principal curvatures can be applied
in the context of a particular class of parameterization techniques, and yields robust
results while preserving fine surface features.

Many recent quadrangulation methods (in contrast to the work based on the construc-
tion of base complexes by simplification [12, 18, 17, 8]) have similar structure: a global
parameterization is obtained by solving equations for gradients of parametric functions,
and a new mesh is generated by following parametric lines. The two main categories
of methods of this type are harmonic and feature-aligned.

Harmonic and conformal methods (for brevity we will we refer to both as harmonic)
are robust, efficient and typically produce good results even for complex meshes for a
suitable choice of singularities and boundary conditions. Some quadrangulation meth-
ods use harmonic maps directly [10, 29]. These methods can be viewed as minimizing
nonconformality of the map, while allowing significant area scaling; nonlinear meth-
ods such as [25, 27] are needed to guarantee a one-to-one parameterization. Extreme
area distortion is reduced by adding singularities (or “cones”) to the parameterization,
with several methods for automatic placement of singularities proposed in [10, 1, 27].
These techniques allow explicit user control over the number of irregular points on the
mesh. The downside of harmonic techniques, especially in the context of remeshing,
is that non-intrinsic shape information is not used directly.

aligned

anisotropic anisotropic+
aligned

isotropic
unaligned

Figure 2: Quad alignment and
anisotropy

The shape information can be taken into account in two dis-
tinct ways to minimize the approximation error. Locally, a
smooth shape can be characterized by its shape operator.
Figure 2 show two ways of taking the shape operator into
account (with principal curvature directions scaled by in-
verse principal curvatures shown in red).

A “perfect” quad of a given area approximating a surface
is aligned, i.e., has edges parallel to principal curvature
directions and anisotropic i.e., has aspect ratio inversely
proportional to the ratio of principal curvatures. This cor-
responds to two classes of feature-aware parameterization
techniques.

Feature-alignment methods [22, 15, 2] adapt the parame-
terization to the shape by aligning new mesh elements with a feature field, typically
derived from the principal curvature direction field, either by smoothing, or interpo-
lation of salient features. The singularities of the parameterization are determined by
the singularities of the field, so the feature field cannot match the actual curvature field
too closely: substantial smoothing is needed to keep the number of singularities small.
The shape of the quads generated by these techniques tends to be uniform, rather than
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anisotropic: one can view these techniques as minimizing non-isometry, while aligning
with the feature field. [2] permits a degree of anisotropy, penalizing changes in length
less than changes in the direction, but without relating these to curvature.

In geometric modeling, anisotropic parameterization was introduced as signal-specialized
parameterization [24, 28]. This work uses a metric derived from the Hessian of the sig-
nal to adapt the parameterization to a signal defined on the surface; in particular, the
surface itself can be used as the signal. Zayer et al. [32, 30, 31] describe a general
class of parameterization methods based on solving a generalized Laplace or Poisson
equation using a tensor field, which can be interpreted as a metric tensor. An elegant
formulation for related quasi-conformal maps based on Beltrami factors described in
[33]. The interpolation and stiffness properties of anisotropic linear triangles in finite-
element context are discussed in detail in [26]. [5] derives bounds on the Haussdorf-
distance approximation of manifolds using a metric closely related to the one that we
use.

We show how to use a metric defined on a surface to obtain anisotropic versions of
global quadrangulation algorithms, both harmonic and feature-aligned, and demon-
strate the improvements in surface approximation that can be obtained in this way. To
the best of our knowledge, metric-based techniques were not yet applied to quadran-
gulation, although [29] suggests that this is possible by altering the Laplace equation
coefficients without suggesting a specific way to compute the metric.

We emphasize that we view using anisotropic metric as complementary to curvature-
alignment approaches, rather than alternative to these. Curvature-alignment methods
allow to obtain a geometrically meaningful set of singularities and coarse alignment
with the shape; Anisotropy helps to resolve sharp features locally with fewer vertices,
and allows to keep the number of parameterization singularities low.

3. Anisotropic metric

A

PQ

parametric plane

f g

Figure 3: Notation

The main idea of our approach is to define a new met-
ric (that is, new edge lengths) on a mesh, and use an
isometry-approximating parameterization based on these
edge lengths for quadrangulation. The discrete metric is
given by Equation (11). Our goal in this section is to
explain the motivation for this choice. First, we discuss
the local error and the choice of the best approximating
quad; under the assumptions that we make, and similarly
to previous work, the optimal quad is aligned with princi-
pal curvature directions, and has aspect ratio proportional
to the ratio of principal curvatures.

Second, we discuss how local errors can be combined together to obtain equations for
the parameterization of the whole surface. We show that isometry in the shape-operator
corresponds to optimal equidistributed error.
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Definitions. Important local properties of a parameterization are captured by the metric
tensor. Suppose a surface A is defined by a function f : R2 → A (Figure 3). A surface
parameterization is the inverse map from the surface to the plane g : A → R2. In
our exposition, it is convenient to fix a surface point p and the tangent plane P at this
point. In this case, ∇f is a linear map from the parametric plane to P .

Recall that the metric tensor of f is defined by

M(f) = (∇f)T∇f (1)

and is given by a 2×2 symmetric positive-definite matrix. For a vector v = q2−q1 in
the parametric domain defined by a pair of close points q1 and q2, the quadratic form
vT M(f)v is, in the limit, the squared length of the image of v: |f(q2)− f(q1)|2.

3.1. Normal approximation error

The local normal approximation error measure (e.g. [6]) is similar to the gradient error
measure in finite elements [9]. This error corresponds more closely to the perceived
visual quality of an approximation, compared to, for example, the distance between
points on the surface. For the purposes of defining a pointwise error, we consider
an idealized setting: (1) The surface has well-defined curvature, with nonvanishing
Gaussian curvature. (2) For a parameterization g, we consider the approximation of
the surface by a collection of small quads. Each quad Q is a parallelogram obtained by
mapping a square Qp of edge length h from a regular grid in the plane to the tangent
plane of the surface at a point g−1(c) = f(c), using ∇f . (3) We assume the surface to
be well-approximated by a quadratic function over the tangent plane over each quad.

We define the error for a quad Q in the tangent plane P with normal nQ as the square
of the average of the deviation of the normal on the part of the surface A(Q) projected
to the quad Q along nQ.

E2
Q =

1
Area(Q)

∫
A(Q)

‖nS(q)− nQ‖2dq (2)

Next, we show how in the limit of small quads this error measure is related to the
shape operator. Let (u, v) be local coordinates in the parametric plane. The linear
approximation to the surface normal over A(Q) is n0 + ∇np, where p is a point in
the parametric plane, ∇n is the Jacobian of n = n(u, v), and n0 is the normal at the
origin of parametric coordinate system; we assume that the origin is chosen to be at the
point where the quad Q is tangent to the surface, i.e. n0 = nQ. By definition of the
shape operator S, Sfu = −nu and Sfv = −nv , in other words, S∇f = −∇n. We
rewrite the expression for the normal as n0 − S∇fp. Then the pointwise squared error
is given by

E2
pt = (n− n0)2 = pT∇fT ST S∇fp (3)
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We assume that the surface is tangent to the quad at the center, (we need to expand the
quad in two directions to make this true for an arbitrary tangent point), integrating Ept

over the quad Q in the tangent plane, we obtain

E2
Q =

1
Area(Q)

∫
Q

(n− n0)2 det∇f dudv

=
h4

12
Tr(∇fT ST S∇f) =

h4

12
Tr(ST S∇f∇fT )

=
h4

12
Tr(S2M(g)−1),

(4)

where we use det∇f = Area(Q) and ∇f = ∇g−1.

We conclude that

E2
Q =

h4

12
Tr

(
S2M(g)−1

)
, (5)

approximates the integral of previously defined quad error up to O(h5) for each quad.

EQ is highly similar to the gradient interpolation error for linear elements [26], yet
there is an important distinction. As discussed in [26, 3], that error has a strong depen-
dence on the shape of the element in the physical space (in our case, the shape of the
approximating quad).

Specifically, if a square is mapped to the tangent plane using a map f with metric S−2,
and the edges of the quad form a large angle in the tangent plane, the error, instead
of being independent of curvature as suggested by (5) and (7) may be of order ah2,
where a is the ratio of max to min curvature; so the error distribution over the surface
is clearly nonuniform. The fact that the quads we consider are tangent to the surface
changes this behavior. However, in this work we are primarily concerned with the
case when arbitrary anisotropy is not allowed. Rather we limit it to moderate values
(typically no more than 5). We also note that under our assumptions, differing from
those in e.g. [9], the error is the same for hyperbolic and elliptic points with identical
principal curvatures. If the vertices of quads are expected to interpolate the surface,
optimality conditions in the hyperbolic case are different.

Uniform-error parameterization and shape operator metric. A natural approach to
define an optimal parameterization given a pointwise local error is to require the error
to have the same value ε over the whole surface, and minimize ε. This is however
distinct from most common methods that define a global energy as an integral measure
of a local error over the surface. Integrating the local error EQ over the surface results
in difficult-to-solve equations. Remarkably, equalizing the error in our case leads to a
simple condition on the error, if one of the constraints of the problem is relaxed.

Denote H = M(g)−1. Then the optimal uniform-error parametrization solves the
following constrained problem:
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Minimize ε, subject to TrS2H = ε, andH = M(g)−1 everywhere. (6)

This problem is difficult to solve directly; instead, one can define an “ideal” metric
H , solving the minimal uniform-error density optimization problem with H as a free
variable, without the constraint H = M(g)−1.

In addition, to the constraint above, we constrain the total area the image of the surface
has in the parametric plane. This additional constraint is necessary as otherwise the
trivial solution of the problem is to set H to zero. This constraint has the following
form:

∫
A

det∇gdA =
∫

A

det H− 1
2 dA.

Then the Lagrange function with multipliers λ and µ for the constrained minimization
of ε is

ε +
∫

A

λTr(S2H) + µdet H− 1
2 dA.

We compute the L2-gradient of this expression with respect to H , using the identities
∂TrAT B/∂A = B, and ∂ det A/∂A = detA(A−1)T , and symmetry of H , we get

λS2 +
1
2
µH−1 det H− 3

2 = 0

i.e., H = kS−2. Substituting into TrS2H = ε, we get k = ε/2, i.e., the scale factor is
independent of H .

We conclude that the “ideal” parametrization has metric given by

M(g) = cS2, (7)

with c independent of the point. In particular, the error bound is the same (under re-
strictive assumptions on approximating quads outlined below) for all parameterization
differing by a rotation of the parametric plane (Figure 5).

In general, S2 may have small or zero eigenvalues, and using it alone as a metric is not
desirable, as this would result in infinitely long or thin quads. We can limit the possible
quad aspect ratios by using G(α) = α2I + S2 as the metric.

We conclude that a uniform normal error parameterization g of a surface with nonzero
Gaussian curvature has a metric tensor coinciding with the square of the shape oper-
ator up to a globally constant scale factor, in other words, it is isometric in the metric
defined by the shape operator.
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Figure 4: Top left to right: a conformal map, a map with a small amount of anisotropy added (α = 3),
and large amount of anisotropy (α = 0.1), where the metric tensor for the parameterization is α2I + S2.
Bottom left to right: corresponding uv maps color-coded by inverse parametric triangle area.

Embeddings. The direct approach (cf. [30]) to obtain parametrizations with respect to
modified metric is to derive the equations for the parametrization directly in terms of
the metric tensor, and choose discretizations for the tensor and the parametric functions.

However, any surface equipped with an arbitrary metric can be embedded in a (usually
higher-dimensional) Euclidean space in which the metric coincides with the induced
metric (see Figure 6). This allows us to recast the problem of computing an isometric
parameterization g of A with a given metric to that of computing an isometric parame-
terization ḡ of the embedded surface Ā in the standard metric. Explicitly constructing
such an embedding for a general tensor may be difficult. Fortunately, for the specific
tensor we use a direct embedding construction is possible, and yields substantially bet-
ter results as we demonstrate in the next sections.

4. Anisotropic parameterization

The observation of the previous section reduces the problem of finding an equidis-
tributed error parameterization to that of finding an isometric parameterization in a
different metric. Most currently used techniques can be regarded as approximations to
the isometric parameterization in Eucledean metric, and can be naturally generalized
if the shape-operator metric can be computed robustly and accurately, as discussed in
Section 5.

We present anisotropic extensions for two parameterization techniques, harmonic, fol-
lowing [27] and feature-aligned, following [2]. As we have discussed in Section 2, the
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Figure 5: The right model shows the result of rotating the anisotropic parameterization 45 degrees. Observe
that the mesh elements remain stretched along the features.

R2

A Ā

parameterization

embedding

g

h

parameterization

ḡ = g ◦ h−1

Wednesday, December 15, 2010

Figure 6: An embedding h which has the desired metric G makes it possible to replace constrction of g as
close as possible to metric G with construction of ḡ as close as possible to isometry.

advantage of the former is more direct and explicit control over the number of singu-
larities, while the latter yields parameterizations better aligned with mesh features, and
typically closer to isometric.

We regard both harmonic and feature-aligned parameterizations as two types of effi-
cient approximations to isometric maps (in the latter case with additional condition of
feature alignment) and demonstrate how these can be combined with anisotropy.

Isometric parameterization and harmonic maps. Isometric parameterizations do not
exist for surfaces with nonzero Gaussian curvature: at best, we can hope to approx-
imate an isometric parameterization. Minimizing the deviation of the metric tensor
from identity leads to nonlinear systems of equations for which no robust and effi-
cient solvers are available. For this reason, many techniques replace direct isometry
optimization with various types of factorizations.

Most commonly, harmonic maps, leading to linear systems, are used to minimize the
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angle distortion, subject to the boundary conditions; harmonic parameterizations often
result in high area distortion. The idea of a number of recent methods [14, 10, 1, 27] is
to use harmonic maps with singularities to define a parameterization, and to reduce the
area distortion by introducing singularities and optimizing the singularity placement.

For the simplest case of a surface with disk topology, a harmonic map minimizes the
Dirichlet energy

E =
∫

A

(∇u)2 + (∇v)2dA (8)

where u and v are parametric coordinates, and ∇ is the surface gradient. Computing u
and v requires solving the linear Laplace-Beltrami equations ∆u = 0 and ∆v = 0.

Anisotropic harmonic maps. In case of isometry, conformal maps are defined by the
condition M(g) = cI; they preserve the ratio of the singular values of the identity
tensor I exactly. Anisotropic conformal maps satisfying M(g) = cG(α) have simi-
lar behavior in the shape operator metric. Intuitively, an anisotropic conformal map
takes a small circle in the parametric plane to an ellipse in the tangent plane of the
surface, with axes aligned with the principal curvature directions, and its aspect ratio is
determined by the ratio of principal curvatures. The effects of such a map, compared
to a conformal map, are illustrated in Figure 4. The anisotropic harmonic map is a
least-squares approximation to the anisotropic conformal map.

Isometric feature-aligned maps. Feature-aligned maps [15, 2] use a feature cross-field,
which locally can be regarded as a pair of orthogonal unit vectors (u,v) to define the
target directions for the surface gradients of parametric coordinates ∇u and ∇v. If the
desired gradient directions for coordinate functions are fixed, finding the as-isometric-
as-possible parameterization can be formulated as a linear optimization problem min-
imizing misalignment with the feature field and deviation of the gradient magnitude
from the unit length:

E =
∫

A

(∇u− u)2 + (∇v − v)2dA (9)

As u and v are orthogonal, perfect minimization of this energy corresponds to an
isometric parameterization.

To obtain the anisotropic feature-aligned parameterization, we remap the feature field
on the original surface A to be orthogonal in the new metric M(g) = cG(α) and com-
pute a feature-aligned least-squares isometric (w.r.t. this new metric) parameterization
of A.

5. Discrete metric

To complete our construction, it remains to define a discrete metric G(α) by assigning
new lengths to each edge (11). While a variety of techniques can be used, we found
that the results can be quite sensitive to the choice of technique.
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There are two approaches to discretize the continuous theory described in the previous
section:

• we can either work on the original surface A (Figure 6) and change the metric
according to a discrete estimation of the shape operator,

• or we can construct the embedding Ã explicitly and use the actual edge lengths
as the discrete metric.

Using the metric G(α) directly. The shape operator S can either be estimated per
vertex [7, 21, 16] or per triangle [23, 13].

For example, to discretize the Laplace-Beltrami equation that needs to be solved to find
the minimum of the Dirichlet energy (8), one can use piecewise-linear elements for the
parametrization, and constant metric tensors defined be triangle (for vertex-based shape
operator estimators, we can average the tensors at the three vertices).

To make the derivation more transparent, we assume that the embedding realization h
of the matric G(α) is known (the equations we obtain will depend on the metric tensor
only, so h is not used for discretization). This means that the differential of h satisfies
∇hT∇h = G(α). We express the parameterization gradient ∇ḡ on Ã in terms of the
parameterization gradient of the original surface∇g as∇ḡ = ∇g∇h−1 (see Figure 6).
The Dirichlet energy density ∇u2 + ∇v2 can be written in matrix form for the map
g = (u, v) as Tr∇g∇gT . Then for the Dirichlet energy density of the map ḡ we have

Tr∇ḡ∇ḡT = Tr∇g∇h−1(∇h−1)T∇gT = Tr∇gG(α)−1∇gT (10)

The last equation can be expanded as ∇uG(α)−1∇uT +∇vG(α)−1∇vT . ( Note that
we consider ∇u and ∇v row vectors, so the terms in the this expression are normms
with respect to metric G(α)−1.)

Minimizing this energy leads to the generalized Laplacian equations for parametriza-
tion of the form div(G(α)−1∇g) = 0, indentical to the equations obtained in [30]
with C = G(α)−1. Finite-element discretization of (10) is essentially identical to the
Euclidean metric case, if G(α) is constant per triangle.

We can show that this discretization reduces to simply rescaling edge lengths per ele-
ment using the metric tensor for this triangle, and computing the element matrix basad
on these new lengths.

As the metric tensors assigned to two adjacent triangles do not necessarily yield iden-
tical results for scaling of the common edge, each edge has two distinct scaled lengths;
the examples in Section 7 demonstrate the effect of this mismatch.

We can instead enforce consistent edge lengths by averaging the two lengths obtained
by using either per-vertex or per element shape operators. However, it proves to be
fundamentally difficult to achieve a consistent discrete metric in this way which satis-
fies the triangle inequality for general meshes. The reason for this can be seen from
Figure 7. Suppose a triangle has bad alignment (long edge along principal direction
with larger curvature). If the metric length of each edge e is determined as the average
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of two lengths (
√

eT M1e +
√

eT M2e)/2, and the singular values of Mi are 1 and k2,
except M3 for which they are 1 and (1+ a)k2, then for large l, a can be at most 4/(lk)
before the triangle inequality is violated. So any averaging method is likely to fail even
for small curvature variation: for k = 10 and l = 10, for instance, only 4% variation is
possible across an edge.

Constructing an embedding. An attractive alternative is to define an embedding of
the surface such that the Euclidean metric on the surface for this embedding yields an
approximation to the desired metric [3]. For the shape operator, the relevant embedding
is the Gauss map: f(p) = n(p) ∈ R3, because S = ∇nT , i.e. S2 is exactly the metric
tensor of the Gauss map.

M1 M2

M3

l

1

Figure 7: A trian-
gle with aspect ratio l,
with 3 metric tensors
Mi at vertices

The shape operator satisfies Sv = ∇vn for a tangent vector v.
Applied to edge vectors eij = pi−pj on a triangle mesh, it can be
discretized by Seij = nj − nj = ∆nij . Then the squared shape
operator metric S2 is given by

eT
ijS

2eij = |∆nij |2

In other words, the optimal metric edge length is simply the dis-
tance between endpoints of the edge in the Gauss map image of the
mesh. Note that so far, we only considered the embedding of the
mesh into a two-dimensional sphere given by mapping each vertex
vi to its normal ni. This, however, is not sufficient to obtain the
metric G(α) = α2I + S2.

We therefore embed the mesh into R6, with a vertex vi mapped to
the point (αpi,ni), where α is a scale factor controlling the aspect
ratios. In this case, the Euclidean metric in R6 yields

l2ij = (αpi − αpj)2 + (ni − nj)2

= eT
ij(α

2I + S2)eij = eT
ijGeij

(11)

i.e. it corresponds to a linear combination of isometry and normal error metrics. This
defines the metric tensor G in terms of metric edge lengths lij . Since every mesh
triangle is embedded in Euclidean space, the metric edge lengths satisfy the triangle
inequality by construction.

Remapping the cross-fields. Conceptually, parametrizing the surface Ã embedded in
six dimensions is not different from parametrizing a surface in three dimensions. One
could remap the salient points on A to Ã, using the natural map p → (p,n), and then
compute the feature cross-field directly on Ã. However, in practice we observe that
the surface Ã is much “bumpier” (Figure8) i.e., has greater oscillations of the Gaussian
curvature, due to higher variation of the shape operator included in the metric. The
cross-field optimization procedure of [2] tends to place cones at Gaussian curvature
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Figure 8: Left: Standard Gaussian cuvature distribution; right: Gaussian curvture of the six-dimensional
embedding.

extrema, which results in large numbers of cones. Instead, we perform cross field
optimization in three dimensions as before, and remap the resulting cross field to Ã.

If for a triangle T the linear transform from T to T̃ in some two-dimensional local
coordinate systems is C and two orthogonal directions of the cross-field are u and v =
u⊥. First, we obtain a nonorthogonal cross field on the six-dimensional surface using
vectors ±Cu and ±Cv. However, to achieve near-isometry, the crossfield needs to be
orthogonal. We consider normalizes vectors u′ = Cu/‖Cu‖ and v′ = Cv/‖Cv‖, and
compute an orthonormal pair ū and b̄v, such that (u′ − ū)2 + (v′ − v̄)2 is minimized.
We observe that if we combine u′ and v′ into a matrix Q, this is equivalent to finding
the closest rotation matrix R to Q.

In the case of general matrices Q with entries qij , the angle α between the x axis and
the direction of u is given by

α = arctan
q21 − q12

q11 + q22

In the case of columns of unit length, this expression can be further simplified, and the
resulting construction admits the following simple geometric interpretation. Consider
bisectors of the two pairs of angles formed by u′ and v′. This bisectors are perpendic-
ular (and in fact represent the rotation with the largest deviation from Q. The smallest
deviation is obtained by π/4 rotation.
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1

Controlling aspect ratios. The parameter α can be used to control the maximal dis-
tortion either globally or locally. We found that the method is stable even for very
small values of α, which allow quads to stretch a lot. The singular values of the tensor
are α + κ2

1 and α + κ2
2, and the aspect ratio of the images of infinitesimal quads is√

(α + κ2
1)/(α + κ2

2),where we assume |κ1| > |κ2|. By choosing

α =

√
r max κ2 −min κ2

r − 1
(12)

globally, we can keep the aspect ratio below r. This is, however, a very conserva-
tive choice, which may eliminate the advantages of the method for surfaces with very
nonuniform curvature.

6. Implementation

The idea of using a shape-operator metric can be integrated with any quadrangulation
approach that only relies on the surface metric: the main change required is to modify
the metric-dependent quantities to use (11); for methods using vector or tensor fields
on surfaces, these need to be remapped accordingly.

The discretization of the Laplace-Beltrami operator L involves the computation of
cotangent weights. These weights can be derived using only edge lengths: for a tri-
angle with sides a, b, c and angle γ = 6 (a, b) we can compute

cot(γ) =
a b cos(γ)
a b sin(γ)

=
a b cos(γ)

2 A

We can then write the triangle area A as

A =
1
4

√
(a + b− c)(a− b + c)(−a + b + c)(a + b + c)

and use the cosine rule cos(γ) = (a2 + b2 − c2)/(2 a b) to arrive at the final form:

cot(γ) =
(a2 + b2 − c2)√

(a + b− c)(a− b + c)(−a + b + c)(a + b + c))

The details of both harmonic and feature-aligned mixed-integer parameterization can
be found in [1, 27] and [15, 2] respectively. Here we present only a brief overview, to
point out the aspect of algorithms that were modified.

1In [19], it was observed that cross-fields are most naturally interpreted as symmetric 4-tensors; this
yields an alternative appoach to remapping fields.
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For both methods, we start with computing a normal field (we use the robust method of
[16]) and compute and smooth the scaling function α, followed by evaluating the metric
lengths lij using (11). Once the global parameterization is computed, we generate a
quad mesh by tracing parametric lines u = i, and v = i where i is an integer, and
determine quad vertex positions at integer u/v locations by linearly interpolating the
original mesh vertices.

Anisotropic harmonic parameterization. The main steps in this case are:

• iteratively optimize cone locations solving the Laplace equation for the scale
factors using metric edge length lij , or specify singularity locations manually;

• cut the mesh into a disk;

• quantize singularity indices to kπ/2 (if not specified by hand), and singularity
positions to integer locations;

• use harmonic parameterization with cotangent weights computed from lij to ob-
tain a global mesh parameterization matching across the seams of the cut.

The main distinction compared to the original method is computing all metric quanti-
ties (cotangent weights in particular) using lengths obtained in (11).

Anisotropic feature-aligned parameterization. In this case, we start with constructing
the 3D feature cross-field:

• identify salient triangles and fix their cross-field directions;

• compute a global smooth feature cross-field using the quadratic mixed integer
optimization of [2];

• detect singularities and cut the mesh into a disk so that the cut passes through all
singularities;

• label globally consistent u and v directions on the cut mesh;

• minimize the fit energy for parameterization gradients to u and v, enforcing
constraints along the cuts and constraining the changes in coordinates across
cuts to be integer.

The last step may be repeated multiple times with increasing weights in the energy to
eliminate inverted triangles in the parameterization (stiffening).

For anisotropic feature-aligned parameterization, we remap the cross-fields on each
triangle to the new metric to the using the approach described in Section 4. Each
triangle T of the mesh for surface A corresponds to a triangle T̃ on the mesh for surface
Ã, with rescaled edge lengths lij . The linear transformation C is uniquely determined
by the affine transformation mapping T̃ to T .

15



7. Results

Comparison of different metric discretizations. First, we demonstrate the robustness
and feature sensitivity of our technique (Figure 9). We compare to an approach similar
to that of [30] descibed in Section (5). This method results in significant smoothing of
the metric, and, as a consequence, sharper features are not captured (Figure 9b.)

We attempt to set the scaled edge lengths again by averaging the lengths computed
using per-vertex shape operators at two endpoints (Figure 9d,e). We observe that even
for modest anisotropy, for a large number of facets the triangle inequality is violated;
refining the mesh in most cases eliminates the triangle inequality violations, but a large
number of iterations may be needed and resulting quadrangulation suffers from metric
smoothing similar to the per-triangle case (Figure 9e).

a b c

d e

Figure 9: Comparison of different ways of specifying metric lengths (a) the original face mesh. (b) face-
tensor-based (c) our method (d) vertex-tensor averaging, triangles not satisfying metric inequality (e) after
refinement, metric inequality is satisfied, but quadrangulation misses some features.

Figure 5 shows the effects of rotating parametric axes for anisotropic harmonic para-
meterization of a shape which does not require adding cones or cuts. Note that the
parameterization automatically squeezes quads to the lines of high curvature: the mesh
elements appear to preserve their orientation, while rotating in the parametric domain.

Comparisons with isotropic quadrangulation. Our primary comparison is to the mixed-
integer quadrangulation of [2] with no anisotropy. Figure 10, Figure 13, and Figure 14
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show feature-aligned quadrangulations for a number of models.

isotropic PGP anisotropic harmonic

Figure 10: Periodic global parameterization and (unaligned) harmonic anisotropic parameterization. Normal
error distribution is shown in pseudocolor.

For two models, we also compare to the periodic global parameterization (PGP) (Fig-
ure 10 and Figure 11). We observe that under some conditions, unaligned anisotropic
harmonic quadrangulation produces better results compared to aligned but isotropic
quadrangulation.

As our main target application is approximating the original meshes with semiregular
meshes with good visual quality, the ultimate criterion in this case (vs., for example,
remeshing for finite element simulation) is the appearance of the resulting models. For
this reason, we present smoothly shaded images of the remeshed models in Figure 14,
along with a pseudocolor rendering of the pointwise normal error (dark red corresponds
to maximal error, dark blue to no error). We choose relatively coarse quadrangulations
to make the errors more apparent. The number of facets in the original models, the
number of quads as the fraction of the original model size, and the number of singular-
ities are summarized in the following table.

model facets reduced to cones
lion head 16674 17% 41
Julius 39168 28% 25
screwdriver 54300 3% 20
Stanford bunny 111364 3.5% 32
rocker arm 20088 8% 26
Omotondo 10000 25% 36
Max Planck 50790 35% 15

We emphasize that our technique aims to make the error distribution more uniform,
not to minimize an integral error measure, hence it is difficult to quantify the relative
quality of the result by a single number. In pseudocolor visualizations in Figure 14, one
can observe greater uniformity in pointwise error. A consistent increase in uniformity
is also confirmed by the plots of the pointwise error distribution: these plots show, for
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a given abscissa β, (in percent of the max possible error in normal), the fraction of
vertices with error above β in log scale. Plots for anisotropic models are in red and for
isotropic in blue. Higher slope corresponds to more even error distribution.

Sharp features. As Figure 11 demonstrates, anisotropic harmonic quadrangulation can
handle models with sharp features robustly, even with no feature alignment. The mesh
for the fan disk model has only 8 singularities, i.e., the whole surface is mapped to the
surface of the cube. Although for noise-free the quality of the result is inferior to the
one that can be obtained by explicitly constraining the parameterization to be aligned
with sharp edges as described in [2], for scanned meshes similar to the screwdriver
example (Figure 14) when the edges of the mesh are not aligned with sharp features of
the underlying geometry.

Figure 11: Quadrangulation of a model with sharp features. From left to right: the original model, remeshing
using PGP, remeshing using anisotropic harmonic map. Both remeshed models retain approximately 20% of
faces of the original model. 8 singularities are used for the anisotropic map, i.e., the model is parametrized
over the surface of a cube.

For certain types of models, it may be highly desirable to preserve sharp features.
For feature-based parameterization, one can explicitly integrate perfectly sharp feature
edges into the process, by forcing the field to be aligned with these edges and forcing
one of parametric coordinates to be constant along these edges. This typically requires
introducing a sufficient number of singular vertices.

In the context of our method, one can introduce parameterization discontinuities along
sharp edges without introducing extraordinary vertices, at the expense of introducing
collapsed quads on a regular mesh. Figure 12 shows a case where sharp features were
tagged along the connection of the model to the plane, and degenerate triangles were
inserted along these creases. For normal calculations the creases were treated as inter-
nal boundaries.

8. Conclusion

The most appealing features of the proposed method are its remarkable robustness
(even for high aspect ratios, compared to other metric-based techniques we have exper-
imented with), its simplicity and its compatibility with a number of other approaches.
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Figure 12: Quadrangulation of a model with sharp features, with additional edges inserted at creases; no
singularities are used. Top: the original model, and our quadrangulation with 25% of faces. Bottom left:
a harmonic map quadrangulation with the same number of faces; Bottom right: the original mesh in the
parametric domain. Note the extremely stretched bands of triangles: these are thin triangles inserted along
the sharp feature.

As we generate quads with large angles, the resulting meshes are in general not suitable
for solving equations on surfaces, unless the aspect ratio is limited to a moderate value;
even with this restriction we can still expect a reduction in the number of quads needed
for a given approximation quality.

While we do provide control over maximal aspect ratios, it is far from a complete
solution, especially in cases of rapid edge length variation.

The method takes advantage of the possibility of discretizing the shape operator metric
using a high-dimensional embedding. We would like to extend this to approximate
embedding discretizations for arbitrary metric tensors.
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